
www.manaraa.com

S. S. Lavenberg
G. S. Shedler

Stochastic Modeling of Processor Scheduling with
Application to Data Base Management Systems

Abstract: This paper is concerned with the stochastic modeling of processor scheduling and of queuing due to contention for re-
sources in data base management systems. The processing services rendered in searching the data base and retrieving and processing
information are modeled explicitly, as is the algorithm used to schedule these services on the processor. The scheduling of the proces-
sor is based on a total priority ordering of a set of queues for processing service. A queuing model incorporating the processor schedul-
ing algorithm for IMS (Information Management System) is formulated in order to illustrate the modeling ideas. The model is analyzed
under rather general distributional assumptions, based on the observation that certain stochastic processes in the model are cumulative
processes defined over the same embedded semiMarkov process. The model is not used in a performance study of IMS, nor is it pro-
posed that the model developed here is one upon which a performance study of IMS should be undertaken. The model should be viewed
as illustrative of stochastic models which can be constructed to incorporate algorithms for processor scheduling.

Introduction
The algorithms used to schedule a computer system’s
resources can affect system performance. This paper is
concerned with the formulation of stochastic models of
the contention for resources in computer systems, which
incorporate explicit representations of algorithms for
processor scheduling. The modeling is illustrated in the
context of data base management systems. A data base
management system is a processing program that oper-
ates under the operating system of a computer and fa-
cilitates the accessing of large quantities of data shared
in common by several applications. When a data base
management system runs on a computer there can be
contention by the data base management program and
the application programs for the processing and input-
output resources of the Svstem. The processor provides
several types of service in searching the data base and
retrieving and processing information, and the scheduling
of these services on the processor can affect system per-
formance significantly.

The several types of service rendered by the processor
are modeled explicitly. The scheduling of these services
on the processor is represented as follows. There can
be more than one queue for each type of processor ser-
vice and the queue entered by a particular customer
requiring processor service depends on the type of ser-
vice required and on the service just completed for that
customer. The scheduling of the processor is based on
a total static priority ordering of the queues for processor
service. This formulation allows rather complex pro-
cessor scheduling algorithms to be represented. To illus-

trate these modeling ideas, a model is formulated which
represents the processor scheduling algorithm for a
particular data base management system, IMS (Infor-
mation Management System) [11.

Most of the previous literature analyzing priority
scheduling in queuing models has been concerned with
single resource models, i.e., the single server queue (see
Kleinrock [2] for an account of such models). Here
priority scheduling is incorporated in a multiple resource
model; i.e., both processor and input-output resources
are represented. An explicit representation of different
types of processor service and processor scheduling in
a multiple resource queuing model can be found in Lewis
and Shedler [3]. Lavenberg [4] formulated a class of
multiple resource models incorporating priority schedul-
ing based on a total ordering of queues. However, unlike
the model developed here, there can be only one queue
for each type of service. An alternative representation
of multiple types of service is possible via the notion of
customer classes as used by Baskett, et al. [SI. (The
models considered in [5] do not incorporate priority
scheduling, however.)

The model developed here is analyzed based on the
existence of an embedded finite state semi-Markov pro-
cess, using techniques similar to those in [3]. In order
that an embedded semi-Markov process exist, it is as-
sumed that certain service times are mutually indepen-
dent and exponentially distributed random variables.
However, all services that cannot be performed simul-
taneously (e.g., all processor services) and that are not 437

MODELING OF PROCESSOR SCHEDULING SEPTEMBER I S 176

www.manaraa.com

Terminals

Operating system

""" r - - - - - - Databases
I I

Data t 1 Data base

cation I IMS I ment
-communi- manage- -

I control I
"""A region L - - - - - -

I I Application

I I library
Message processing regions program

I I
I I

Figure 1 Configuration of a computer system running IMS.

Figure 2 Hierarchical tree structure.

interruptable are assumed to be mutually independent
random variables having arbitrary distributions, where
the distribution depends on the service type.

Although the particular model described here has been
formulated in the context of a computer running IMS,
this paper does not contain a performance study of IMS.
The model should be considered illustrative of stochas-
tic models that can be constructed to incorporate algo-
rithms for processor scheduling in data base management
systems. Although the model is in general consistent with
the processor scheduling algorithm of IMS, it is not pro-
posed as the model upon which a performance study of
IMS should be undertaken. In particular, there is no
claim that all system features relevant to such a perfor-
mance study have been incorporated in the model. More-
over, there has been no attempt here to validate the par-
ticular probabilistic assumptions that have been made.
To do so would involve the collection of data from rep-
resentative running systems and the statistical analysis
of those data (cf. Gaver, Lavenberg and Price [61) . Vali-
dation of the total model could be based on the compari-
son of one or more stochastic processes observed in the
running system with corresponding processes predicted

438 by the model. Techniques for the statistical analysis of

I S. S . LAVENBERG
AND G . S . SHEDLER

such stochastic processes that may be applicable in a
total model validation can be found in Lewis and Shed-
ler [71.

The next section of the paper is a description of IMS
that is intended to provide a background for the re-
mainder of the paper. In the third section, contention for
the resources of a computer system running IMS and
processor scheduling in IMS are discussed. A queuing
model of IMS incorporating processor scheduling is
formulated in the fourth section. The last section con-
tains an analysis of the queuing model.

Description of IMS
IMS operates under the operating system of a computer
system and extends the data communication and data
base management capabilities of the operating system.
Only the data base management facility of IMS called
Data Language/ I (D L / I) will be considered in this
paper (IMS/360, Version 2, Release 2.3).

In IMS, users can access the data bases from remote
terminals by entering messages called transactions. A
particular transaction uniquely identifies an application
program, which processes the message and accesses
the data bases. The execution of an application program
gives rise to a sequence of data base calls to the IMS
program. (Application programs also issue data com-
munication calls to IMS, but these are not considered
in this paper.)

A conceptual diagram of a computer system running
IMS is given in Fig. 1. As indicated, the operating system
resides in memory. The IMS program occupies a portion
of memory called the I M S control region. Application
programs reside in secondary storage in an application
program library. For execution, an application program
must be loaded into one of several regions in memory,
called I M S message processing regions. The data bases
reside in secondary storage and data are transferred into
memory for processing in response to transactions.

Application programs written to use IMS deal with
logical data structures and are independent of the phys-
ical data structure, "physical" referring to the manner
in which the data are stored in secondary storage. In
IMS, the logical data structure is a hierarchical tree
structure of one or more segment types, a segment type
being a data element composed of related data fields.
Figure 2 depicts a hierarchical tree structure consisting
of five segment types. Segment A at the top of the tree is
called the root segment. The segments below A in the
tree and directly connected to A, i.e., segments B and E,
are called the children of A, and A is called the parent
of B and E. Similarly, C and D are the children of B, and
B is the parent of C and D. All segments below A and
connected to A by a path in the tree, Le., segments B, C,
D, and E, are said to be dependent on A.

IBM J. RES. DEVELOP.

www.manaraa.com

In general, many instrrnc.ps of each segment type exist
in the tree. Lower case letters with multiple subscripts
can be used to designate segment instances and to make
segment dependencies explicit. Thus, for the hierarchical
tree structure in Fig. 2,

ai = ith instance of root segment A,

bij (resp. e i j) =jth instance of segment type B(resp. E)

whose parent is ui, and

cij,(resp. d i j k) =kth instance of segment type C(resp. D)

whose parent is bij.
A tree consisting of a single instance of a root segment

and all its dependent segment instances is called a logicul
data base record. The tree shown in Fig. 3, which depicts
all segment instances dependent on ai, is a logical data
base record. The set of all logical data base records hav-
ing the same root segment type comprises a logical data
base. In a logical data base a particular ordering of seg-
ment instances is assumed, the top-down left-to-right
(TDLR) ordering. To illustrate TDLR ordering, suppose

j = 1 in Fig. 3 ; i.e., the logical data base record shown in
Fig. 3 is the first record in a logical data base. The seg-
ment instances that comprise the logical data base record
are shown numbered in TDLR order in Fig. 4. If there
were a second record in the logical data base, its root
segment instance would be numbered 13, and the num-
bering of its remaining segment instances would proceed
in a manner similar to that shown in Fig. 4.

Each data base call issued by an application program
constitutes a request to IMS to perform an operation of
specified type on a segment instance in a logical data
base. Examples of operations specified by data base
calls are: get a unique segment instance, get the next

sequential (in the TDLR ordering) segment instance,
replace the data in an existing segment instance, delete
an existing segment instance, and insert a new segment
instance. The segment instance to be operated on is
called the target segment and is explicitly specified by
the call and, in the case of get next calls, by the current
position of a cursor for the data base. In general, it is
necessary to search the data base, i.e., to access a num-
ber of distinct segment instances, in order to find the
target segment; the segment instances that are accessed
are called path segments. (The final segment instance
in the access path is the target segment.) At the success-
ful completion of a data base call, the cursor is positioned
at the target segment.

IMS maintains a buffer poo l of physicul blocks in
memory; each block contains one or more segment in-
stances. A physical block is the unit of transfer of data
between memory and the data bases residing in secondary
storage. When a particular segment is to be accessed,

Figure 3 Logical data base record.

Figure 4 TDLR ordering

IMS first determines if the block containing the segment
is in the buffer pool. If it is, the segment can be accessed
without performing a physical 1 / 0 operation (e.g., adisk
access and data transfer) ; if it is not, an 1 / 0 operation
must be performed to transfer the block containing the
segment from the data bases to the buffer pool.

IMS supports two physical storage organizations,
hierarchicd sequential and hierarchical direct. The
order in which segment instances are accessed differs
for these two organizations. Under the hierarchical se-
quential storage organization, segment instances in a
logical data base are accessed consecutively in TDLR
order from some position in the data base. (The position
is the beginning of the data base for get unique calls,
and the position is the current cursor position for get
next calls.) Under the hierarchical direct storage organ-
ization, certain segment instances can be related by
pointers, and segment instances related by pointers can
be accessed successively (intervening segment instances 439

MODELING OF PROCESSOR SCHEDULING SEPTEMBER 1976

www.manaraa.com

are not accessed). Segment instances of the same par-
ticular type that are children of the same parent segment
instance are called twins. (All root segment instances in
a logical data base are twins.) Under the direct organi-
zation, adjacent twins can be related by forward, or
forward and backward, pointers; e.g., if { b i j } are twins
which are children of ai, then b , and bij+l can be related
by pointers. A parent segment instance can be related
by forward pointers to the first, or first and last, instances
of each of its children; e.g., if {b . . : j = 1, . .., n } and
{ e i j : j = 1 , . . ., m } are all the instances of children of seg-
ment instance ai, then ai and bi, can be related by a
pointer as can ai and bin, ai and eil, ai and ef,. Each in-
stance of a child can be related by a backward pointer
to its parent segment instance. Segment instances that
are consecutive in TDLR order can also be related by
pointers. In addition, indices can be maintained under
either storage organization that allow root segment in-
stances to be accessed without accessing any other seg-
ment instances. Clearly, the physical storage organization
affects the number of path segments that must be ac-
cessed in order to find the target segment. The number
of path segments accessed is called the access path
length.

Z J

Resource contention and processor scheduling
in IMS
In the next section a queuing model of processor sched-
uling in IMS is presented. The interactions between two
abstract servers, a processor and an 1 1 0 unit are con-
sidered in the model. The model contains an explicit
representation of the several processor activities in-
volved in servicing data base calls (e.g., determining the
next path segment to be accessed, searching the buffer
pool, processing the target segment), along with the
algorithm used in scheduling these services on the pro-
cessor. The transfer of physical blocks from the data
bases to the buffer pool is also represented in the model.
The collection of devices (e.g., disks and channels) that
perform the data transfers comprises the I / 0 unit. Pro-
cessor activities related to data communication and the
activity of the terminals are not represented in the model,
nor is the loading of application programs from the appli-
cation program library into the message processing re-
gions. The model addresses the congestion problems
arising from the contention for processor and 1 / 0 unit
resources when several message processing regions are
active simultaneously.

When a data base call is issued from a particular IMS
message processing region, a sequence of processor and
1 / 0 unit services is performed in response to that call.
Six types of services can be distinguished. Services of
the processor are required to: 440

S. S. LAVENBERG AND G. S. SHEDLER

block containing the path segment,
3. find the path segment within the path block and ex-

amine the path segment in order to determine whether
or not the path segment is the target segment (if not,
another path segment must be retrieved),

4. perform overhead activities associated with a block
transfer,

5. process the target segment.

Service of the 1 /0 unit is required to:

6. transfer a block from the data base to the buffer pool.

The order in which these processor and 1 / 0 unit ser-
vices are rendered by IMS to an individual data base call
can be described as follows:

Service I) is performed first and then services 2) and
3) are performed alternately until either a) a buffer pool
exception occurs, i.e., the block containing the path seg-
ment is not in the buffer pool, or b) the target segment
is found, i.e., the path segment is the target segment.
In the former case, services 4) and 6) are performed be-
tween services 2) and 3). In the latter case, service
5) is performed after service 3) and is the last service
performed in response to the data base call.

Several data base calls can compete concurrently for
the processing and 110 resources of the system. The
allocation of the processing resources to the competing
data base calls, i.e., the scheduling of the processor, is
summarized next. In IMS, a data base call receiving
processor services I) , 2) , 3) or 4) maintains sole access
to the processor until either processor service 5) or I / 0
unit service 6) is to be performed. At that time, the pro-
cessor may be allocated to a competing data base call
as determined by a priority rule. The priority rule im-
plemented in IMS is essentially the following:

Highest priority is given to resuming processor service
[i.e., providing service 3)] for a data base call whose
block transfer [service 6)] has been completed. Next
highest priority is given to initiating processor service
[i.e., providing service l)] for previously unserviced
data base call. Lowest priority is given to processing
the target segment [Le., providing service 5)] .

Processor service 5) , once begun, is interruptable at
the completion of I / 0 unit service 6) . This interruption
is of the preemptive-resume type and the next processor
service to be performed is determined by the above
priority rule. No other services are interruptable.

IBM J. RES. DEVELOP.

www.manaraa.com

Description of the queuing model
The servicing of competing data base calls can be rep-
resented mathematically as a network of interconnected
queues that will now be specified. It is assumed in this
model that at any instant of time there is a fixed number
of data base calls issued, one from each message process-
ing region; i.e., the number of active message processing
regions is constant. No distinction is made among dif-
ferent types of data base calls. When service is completed
in response to a particular data base call, the message
processing region that issued the call is assumed to issue
another call immediately. The model is depicted in Fig. 5.

The interpretation of the diagram for this model differs
from that of a conventional queuing model in that services
are distinguished from the servers which perform them.
Thus, circles in the figure represent services rather than
servers. Five types of service, denoted by ao, al, a2, a,
and /3 are represented in this model. The a services
(ao, a] , a2 and a,) are performed by a single server,
representing the processor, and the /3 service is per-
formed by a single server, representing the I / O unit. It
is assumed in the model that no two a services can be per-
formed concurrently, but that any a service can be
performed concurrently with a /3 service. Each of the
ao, a l , a* and /3 services is assumed to be non-interrupt-
able. The a, service is, however, interruptable at the
completion of a /3 service, this interruption being of the
preemptive-resume type. The interpretation of the a
and /3 services in terms of the services described in the
previous section that are performed when servicing a
data base call is shown in Table 1 .

A fixed number of customers, each customer represent-
ing a data base call, circulates in the network. At time
zero all customers are assumed to be in the queue denoted
by qo and an a. service is about to begin. At any sub-
sequent instant of time a customer is either receiving
service or waiting for service in one of the queues. Each
of the queues is assumed to be a first-come first-served
queue. Note that there can be more than one queue for
a particular type of service, e.g., there are two queues,
denoted by ql, and ql, 2, for the a1 service. The flow of
customers is indicated by the arrows in Fig. 5. Note that
there are two branches leaving the a1 service and two
branches leaving the a2 service. These branches are
labeled by binary-valued variables $l and $2 defined as
follows:

I ,=[

h = { 0, else.

1 , if buffer pool exception occurs

0, else;

1 , if path segment is target segment

Upon completion of an at or a2 service, the customer
just served follows the branch whose label has value 1 .

+7 42.1

I -*2

I I I I
Figure 5 Queuing model incorporating processor scheduling.
1. Processor renders ao, al, cy2 and a3 services.
2. 1 / 0 unit renders p service.
3. a,,, al, a2 and p services are not interruptable.
4. a3 service has pre-emptive resume type interruption at com-

5 . Processor scheduled according to priority ordering of queues

6. Routing determined by binary valued random variables +,

pletion of b service.

40. q1, 1' 91, 2' q2, 1' q2, 2 and qs.

and &.

Table 1 Interpretation of services in model

Service in model lnferpvetution of service

a0 1)
a1 2) if no buffer pool exception occurs;

2) followed by 4) if a buffer pool
exception occurs

a2 3)
5)
6) 2

Thus, for example, if upon completion of an a1 service
the current value of is zero, the customer just served
enters queue qz, 1.

The epoch of completion of any a service or the epoch
of completion of a /3 service at which either no a service
is in progress or an a, service is in progress is called a
scheduling decision epoch and is an epoch at which the
next processor service to be performed, if any, is de-
termined by a processor scheduling algorithm. It is
assumed that the customer whose service has just been
completed immediately enters the next queue on its
route at such an epoch. The next processor service is the
service having highest priority, where priority is de-
termined by a total ordering of queues qo, ql,], ql, 2, q2, l,
q2, and q3. The processor scheduling algorithm d em-
ploys the total ordering 4 , *, qp, l , ql, 1, qp, 2, q,,, q, from
highest to lowest priority. A flowchart of this processor
scheduling algorithm is given in Fig. 6. Theorem 1 , below,
establishes some consequences of applying algorithm d
at each scheduling decision epoch. The following lemma
will be used in the proof of this theorem. 441

MODELING OF PROCESSOR SCHEDULING SEPTEMBER 1916

www.manaraa.com

0 Start

+-+, Begin (Y, service from q

+;.,” empty?

+- empty?

Begin cu,, servicefromq,,
empty?

e l empty? Begin service from q 3

Yes

Noclaimon
processor made

D

Figure 6 Processor scheduling algorithm.

Lemma 1 If at time zero all customers are in queue q,,
with a. service about to begin, then under processor
scheduling algorithm d queues ql, 1, q , 2, and q2, will
always be empty, except instantaneously at epochs of
completion of a,,, a2 (if +2 = 0) and a1 (if +1 = 0) services,
respectively.

Proof A customer enters q,, only upon completion of
an a2 service. Consider the first time a customer enters
q , 2. Since q,, has highest priority (see Fig. 6) it empties
immediately and an a1 service starts. By induction on
k it can be shown that for any k , the kth time a customer
enters ql, this queue empties immediately and an a1
service starts. A customer enters q2, ,,only upon comple-
tion of an a, service. At any such time ql, is empty as
just shown. Consider the first time a customer enters
q2, 1. Because ql, is empty and q2, has second highest
priority, q2, empties immediately and an a2 service
starts. Again by induction it can be shown that whenever
a customer enters q2, ,, this queue empties immediately
and an a2 service starts. By a similar argument it can be
shown that whenever a customer enters ql, this queue

442 empties immediately and an a1 service starts.

Theorem 1 If processor scheduling algorithm d is
applied at each scheduling decision epoch, then processor
services are scheduled so that a customer receiving pro-
cessor services ao, al or a2 maintains sole access to the
processor until either an a2 service is completed and +z =

1 or an a1 service is completed and $1 = 1 . At such a
point in time or at the completion of a p service while
an a3 service is in progress, the next processor service
to be performed is chosen according to a priority rule
as follows:

Highest priority is given to a customer in queue q2,
(awaiting a2 service). Next highest priority is given to a
customer in queue qo (awaiting a. service). Lowest
priority is given to a customer in queue q3 (awaiting a3
service).

Proof It follows from Lemma 1 that a customer com-
pleting an a. service immediately begins an a1 service,
a customer completing an a1 service with +l = 0 imme-
diately begins an a2 service and a customer completing
an a2 service with +, = 0 immediately begins an a1 ser-
vice. Furthermore, at an a2 service completion with
+2 = 1 or at an a, service completion with = 1, ql, 1,

ql, and q2, are empty. At such scheduling decision
epochs algorithm a? gives highest priority to beginning
an az service from q , 2, next highest priority to beginning
at a. service from qo and lowest priority to beginning an
a3 service from q3. Finally, since an a3 service has lowest
priority under algorithm d, an a3 service can only be in
progress if q,,, ql, 1, ql, 2, q2, and q2, are empty. Thus,
if a p service completes while an a3 service is in progress,
an a2 service is begun from q2, 2.

This theorem implies that the scheduling of processor
services in the model is identical to the scheduling of
processor services in IMS as described in the previous
section.

The queuing model just described is analyzed in the
next section under the following eight probabilistic
assumptions:

1. For i = 0, 1, 2 , 3 successive ai service times form a
sequence {ai,: k = 1, 2, . . .} of independent and iden-
tically distributed (i.i.d.) random variables, each
distributed as a random variable ai.

2. Successive /3 service times form a sequence {bk:
k = 1 , 2; . .} of i.i.d. random variables, each distributed
as a random variable h.

3 . For i = 1, 2, +i is a random variable and values of +i
at successive ai service completions form a sequence
{ & , : k = 1 , 2, . . .} of i.i.d. random variables.

4. The sequence of pairs of random variables {a,,,
: k = I , 2, . . .} is a sequence of i.i.d. random vec-

tors, each distributed as the random vector (a l , +]).
The random variables alk and +lk may be dependent

S. S. LAVENBERG AND G. S. SHEDLER 1BM J . RES, DEVELOP.

www.manaraa.com

random variables since al, is interpreted as the dura-
tion of processor service 2) if +,, = 0 and as the sum
of the durations of processor services 2) and 4) if
+,, = 1 (see Table 1) . If alk and +,, are assumed to
be dependent, then a joint distribution of the random
variables a, and +, must be specified.

5. All other random variables are mutually independent.
6. The random variables a, and h are exponentially

distributed.
7. Each of the random variables a,, a, and a2 is non-

negative with non-zero finite mean but otherwise
arbitrary distribution function.

8. Pr{+, = l } > 0, so that customers eventually receive
a, service.

Some comments about these probabilistic assumptions
are appropriate. In analyzing this model, epochs of time
at which no a service is in progress play a special role.
If b is exponentially distributed, the elapsed /3 service
time at these epochs need not be part of the definition
of the state of the model. Similarly, if a, is exponentially
distributed, the elapsed a, service time at an interruption
caused by a /3 service completion need not be part of
the state definition. Since a,, a , and a2 services are not
interruptable, a,,, a, and a2 may have distributions of
arbitrary form.

Note that the assumptions that the random variables
$t2, are i.i.d. and independent of all other random vari-
ables implies that the number of segments accessed in
response to a data base call, i.e., the access path length,
has a geometric plus one distribution.

Analysis of the queuing model
In this section an analysis is given of the queuing model
of processor scheduling in IMS as defined in the pre-
vious section. The analysis yields expressions for the
long-run fractions of time during which the processor
performs a,,, a,, a2 and a, services, the long-run fraction
of time during which the 1 / 0 unit is busy, the long-run
number of data base calls serviced per unit time and the
average response time for a data base call. Techniques
of analysis similar to those in Lewis and Shedler [3] will
be used. The analysis given is based on the observation
that the processes of accumulated service times for each
type of service in the model are cumulative processes
defined over the same embedded semi-Markov process.

State definition
For t 1 0, denote by no(t) , nl, (t) , . . ., n3(t) the number
of customers in queue q,,, ql, 1, . . ., q3, respectively, at
time t+ and by n,(t) the number of customers in the
queue for the /3 service at time t+. Let

1 , if an a, service is in progress at time t+

0, else, k = 0, 1 , 2, 3,

1 , if a p service is in progress at time t+

0, else.

i , (t) =

i i ,(t) =

It follows from Lemma 1 of the previous section that
n,, , (t) = n , , (t) = n , , (t) = 0 for all t 1 0 .

The state of the queuing network at any time t 2 0 is
defined to be the 5-tuple v(t) = (u,(t) , u,(t) , u2(t) , u,(t) ,
u , (t)) where u,(t) = n o ([) + i , (t) , u , (t) = i , (t) , u, (t) =

n,,,(t) + i , (t) , u,(t) = n,(t) + i , (t) and u,(t) = n,(t) +
i,(t) . The components of v(t) sum to N, where N is the
number of customers in the queuing network. Since
a,, a, and a2, respectively, the a,, a , and a, service times,
have arbitrary (i.e., in general, non-exponential) distri-
butions the stochastic process v (t) is not a Markov pro-
cess, but is Markovian only at certain epochs of time.

8 Embedded Markov chain and embedded semi-Markov
process
Let { t,: k = 1, 2, . . .} be the increasing sequence of all
epochs of completion of a,,, a, and a, services. Since
neither an a,,, a, nor a, service can be in progress at t,,
under the probabilistic assumptions that have been made
(e.g., a, and b, the a, and /3 service times, are expo-
nentially distributed) it can be verified that the embedded
discrete time stochastic process {v(t,) : k = I , 2 , . . .} is a
Markov chain. In addition, it can be verified that the
time between epochs tk-, and t , is, given the state at
these epochs, independent of the time between previous
epochs and the state at previous epochs. Thus, the em-
bedded continuous time stochastic process v'(t) defined
b y v ' (f) = v (t , - ,) , t , _ , ~ t < t , , k = 1 , 2 ; ~ ~ , w h e r e t , = O ,
is a finite state semi-Markov process. Note that both the
embedded Markov chain and the embedded semi-Markov
process have finite state space given by YN = {v =

(u,, u l , u,, u,, u,) : u,, . . ., u, are non-negative integers,
u, +. . . + u, = N , u, = 0 or 1 } where the dependence on
N, the number of customers in the network, has been
denoted explicitly.

A number of states in the embedded Markov chain and
hence in the embedded semi-Markov process are tran-
sient. The following lemma is used to identify the tran-
sient states.

Lemma 2 If at time zero all customers are in queue q,,
with an a,, service about to begin, then after a finite time
queue q, will be empty and will always be empty there-
after (except instantaneously at epochs of completion
of an a, service).

Proof A customer enters queue q,, only upon comple-
tion of an a3 service. Since an a3 service is interruptable 443

MODELING OF PROCESSOR SCHEDULING SEPTEMBER 1976

www.manaraa.com

only at completions of f i service, i.e., when a customer
enters queue q2, 2, and a3 service has lowest priority
under algorithm d, it follows that queues q,, 2, q2, ,,
q,, ,, qp and qo are empty immediately prior to an a3
service completion. Thus, under algorithm d, an a.
service starts immediately for the customer whose a3 ser-
vice was just completed. Since all service times are
finite and Pr{$2k = 1 } > 0, an a3 service completion will
occur in finite time. The proof is complete.

It follows from Lemma 2 that Iimk+- Pr{n,(t,) = 0} =

1. Also, note that i O (t k) = 0 for all k . Thus, the set of
states LTN = {v E Y N : u o > O} is transient. For any state
v E YN - Y,, uo = 0. It is shown in Appendix A that
all states in .V, - YN communicate. Thus, YN - ,F, is the
single irreducible class of the embedded Markov chain
and hence of the embedded semi-Markov process.

Since all service times are assumed to have finite mean,
it is straightforward to show that the mean holding times
are finite for all states of the embedded semi-Markov
process. Thus, all states in the irreducible class 9, - , F A ,

are positive recurrent in the embedded semi-Markov
process (cf. Ross [S I) . This result guarantees the ex-
istence of limits for the processes of accumulated service
times.

Cumulative processes
Let vo be any state in 9, - YN. Let (7,: k = 1, 2; . .} be
the subsequence of {t,: k = 1 , 2, . . .} having the property
that for each k , v (rk) = v o . Then { T , - T , - , : ~ = 1 , 2;..},
where T,, = 0, is a delayed renewal process, i.e., rk - T,-,

are i.i.d. for k = 2, 3 , . . . and independent of r1 - ro. Since
vo is positive recurrent, E[r2 - r,] < 00. Denote by Wi(t)
the total amount of time that ai service is performed in
[0, r) , i = 0, I , 2 , 3 , and by W 4 (t) the total amount of
time that j3 service is performed in [0, t) . Then W i (t) is
a cumulative process (cf. Smith [9]) defined with respect
to the delayed renewal process { T , - T,-,}, and since
W i (t) 5 t , E[Wi(r2) - Wi(r,)l < to. Thus, Ui = lim,+m
Wi (t) / t exists with probability one and

The quantities Ui, i = 0, . . ., 4, are by definition, re-
spectively, the utilization of the processor due to ao,
a1, a2 and a3 services and the 1 / 0 unit utilization. These
utilizations need not be determined independently, how-
ever. It is shown in Lavenberg and Shedler [101 that

where pi = Pr{ $i = 1 } , i = I , 2, and E[] denotes expecta-
tion. Thus, if any one of the utilizations, say U,, is known,
the other four utilizations can be easily determined by
using (2) . The total processor utilization is given by

Note that the ratio of processor to I / 0 unit utilization
ua= uo+ u , t up+ u,.

is given -by

and is independent of N , the number of customers in the
network.

Let { R , : k = 1 , 2, . . .} denote the sequence of succes-
sive response times in the model, i.e., for the kth customer
to enter queue qo (the customer may spend zero time in
queue q,,), R, is the time from when this customer enters
queue qo until this customer next completes an a3 service.
(The first customer to enter queue qo is the customer in
the last position in queue qo at time zero.)

It is shown in [I O] that R = limn+m Sl=,R,/n exists
with probability one and that

The quantity R is interpreted as the average response
time for a data base call. It is also shown in [101 that the
long-run number of completions of a3 service per unit
time, here denoted by A, is related to R by the formula

A = N/R. (5)

The quantity A is interpreted as the throughput, i.e., the
long-run number of data base calls serviced per unit time.

The expectations E [T ~ - T ~] and E[W 1 (r 2) - W,(rl)]
are computed in Appendix B. All utilizations, the average
response time and the throughput can then be determined
easily by using (1), (2) , (4) and (5) . Numerical studies
for the queuing model, obtained via the analysis of this
section and Appendix B, can be found in [I O] .

Acknowledgment
The authors are indebted to J . Rodriguez-Rose11 and
W. G. Tuel for sharing their insights into the operation
of IMS. The present work benefited from conversations
with them about resource contention and processor
scheduling in IMS, although this model does not apply
directly to IMS.

Appendix A
Here it is shown that all states in 9, - Y," communicate.
I t is convenient to represent any state v = (0, u,, u2,
us, u4) E 9, - YA, by a triple x = (x,, x 2 , xJ where x, =

up, x p = u3 and x3 = u4 so that x, + x2 f x, = N - 1 or N.
Let a, be the set of all such triples, i.e.,

rND G . S. S :HEDLER IBM J . RES. DEVELOP,

www.manaraa.com

0, = {x = (x , , x p , x 3) :x1, x2 , .x3 are non-negative integers,

x l + x , + x 3 = N - 1 orN}.

The cardinality of R, can be shown to be equal to
(N + 1)’. In what follows the members of R, will also
be called states.

Let x + y denote that a transition in the embedded
Markov chain from state x E R, to state y E a,,,, occurs
with positive probability. It can be shown (e.g., see
(Bl)-(B8) of Appendix B) that:

if x , + x g + x3 = N - 1, then

x + (x , + i , x , , x , + 1 - i) , i = O ; . . , x , + I ; (A l)

if x , + x p + x3 = N and x, > 0, then

x + (x 1 - 1 + i , x , , x 3 - i) , i = O ; . . ’ x3 (A21

x + (x , - 1 + i, x z , x3 - i), i = 0 , . . . 3 x 3 ; (A31

if x , + xq + x3 = N, x , = 0, xq > 0 and x3 > 0, then

x ”, (i, x,, x3 - 1 - i) , i = 0 ; . . , x 3 - 1 (A4)

X”,

X +

and

(0, 0 N) + (i , O , N - 1 - i) , i = O . . . 7 , N - 1 (A71

Let x A y denote that state y E R, is reachable from
state x E a, in a finite number of transitions.

Lemmu 3 For any y E a,, (0, 0, N) A y.

Proof From (A7),

(0,0, N) A (i , O , N - 1 - i) , i = O ; . . , N - 1 (A10)

F r o m (A l) , (i , O , N - l - i) + (i , O , N - i) , i = O ; . . ,
N - l , a n d (N - l , 0 , O) + (N , 0 , O) . T h u s , u s i n g (A 1 0) ,

(0 , 0, N) A (i ,O, N-i) , i=O;. . , N. (A1 1)

From(A3),(i+I,k-l,N-k-i)-+(i,k,N-k-i),
k = 2, . . . , , N i = 0, . . ., N - k . Thus, starting with (AS)
it follows that

(0 , 0, N) A (i, k , N - k - i) , k = l;.., N,
i = 0; . ., N - k . (A121

From (A2), (i + 1, k , N - 1 - k - i) + (i, k , N - 1 -
k - i) , k = 1 ; . . , N - l , i = O ; . . , N - l - k . T h u s ,

(0, 0, N) &= (i, k, N - 1 - k - i) , k = I ; . . , N - I ,

i=O; . . , N - 1 - k . (A131

The triples on the right side of (AIO)-(A13) exhaust
the members of R,. Hence, the proof is complete.

Lemma 4 For any y E R,, y 3 (0 , 0 , N) .

Proof From (A l) , (A2) and (A6) it follows that

(i, k - i - 1, N - k) + (i , k - i - 1, N ” k + l) ,

k = 1, . . . $ 3 N i = O , . . . , k - 1 (A14)

(i, k - i, N - k) + (i - 1, k - i, N - k) ,

k = I;.., N, i = l;”, k (A15)

(0 , k , N - k) -+ (0, k - I , N - k) ,

k = I ; . . , N - 1. (A16)

First using (A14)-(A16) for k = 1 , then using (A14)-
(A16) for k = 2, ..., then using (A14)-(A16) for k =

N - 1,thenusing (A14) and (A15) fork=Nandfinally
using (A9) yields

(i , k - i - I , N - k) -L (O , O , N) , k = I ; . . , N,

i = O;.., k - 1 (A17)

(i , k - i , N - k) &= (0 , 0, N) , k = I ; . . , N,

i = O ; . . , k . (A18)

The triples on the left side of (A17) and (A18) exhaust
all members of R, except (0, 0, N) , which was shown
to be reachable from itself in Lemma 3. Hence, the proof
is complete.

It follows directly from Lemmas 3 and 4 that all states
in 9, - Y ~ v communicate.

Appendix B
The expectations E [T ~ - T,] and E[W,(T,) - W,(T ,)] are
computed here. The first step in the computations is to
compute the stationary probability vector of the em-
bedded Markov chain. Only states in the single irreduc-
ible class 9,v- Y, need be considered. As in Appendix A
let R, be the set of triples which represent the states in
9, - T,, i.e.,

R, = {x = (x , , x , , x 3) : x , , x , , x3 are non-negative integers,

x , + x , + x3 = N - 1 or N}.

Thus x , represents the number of customers in queue
q,, or receiving a2 service, x2 represents the number of
customers in queue q3 or receiving a3 service, and x3
represents the number of customers in queue for or re-
ceiving p service.

The transition probabilities for the states in R, are
straightforward to obtain. A few of these are derived
below for illustrative purposes. Let Fi(t) = Pr{a, < t } ,
i = 0, 2 and let F , j (t) = Pr{a, < ti$, = j } , j = 0, 1. Recall
thatpj=Pr{$j=l}, j=1,2.DenotebyX=1/E[u3]and

MODELING (

445

3F PROCESSOR SCHEDULING SEPTEMBER 1976

www.manaraa.com

y = l/E[h] the rate parameters of the exponentially
distributed random variables u3 and b. Let vn = C:=,b,,
n = I , 2 , . . ., and vo = 0. Let

n = 1 , 2;“,plj(O) = l , j = O , 1.

Denote by p (x , y) the probability of transition from state
x to state y.

Consider now an x such that x, + x2 + x3 = N - 1 and
x3 > 0, i.e., a state for which an a, service is about to
begin and there is at least one /3 service to be performed.
A state transition occurs at the completion of the a,
service and the possible states at the completion of the
a, service are (x, + i, x,, x3 + 1 - i) , i = 0, I ; . . , x3 if
$,= 1 and (x , + 1 + i , x , , x 3 - i) , i = 0 , l; . . ,x,if$,=O,
where i is the number of /3 services which complete dur-
ing the CY, service. Thus, it can be shown that

Hence, if x1 + x, + x3 = N - 1 and x3 > 0, then

P (X , (x, + i , x,, x3 + 1 - i))

As a second example consider an x such that x1 + x2 +
x3 = N, x1 = 0, x2 > 0, x3 > 1, i.e., a state for which an CY^ 446

S. S. LAVENBERG A LND G. S. SHEDLER

service is about to begin and there are at least two p ser-
vices to be performed. A state transition occurs at the
next a2 service completion if a p service completes before
the as service completes [see Figure 7(a)] and the pos-
sible states at the CY, service completion are (i, x2, x3 -
1 - i) i f ~ 2 = O a n d (i , x , + 1 , x , - 1 - i) i f ~ , = 1 , i = 0 , ~ ~ ~ ,
x3 - 1 , where i is the number of p services which complete
during the a2 service. A state transition occurs at the
next a0 completion if the as service completes before a
/3 service completes [see Figure 7 (b)] and the possible
states at the a0 service completion are (i, x, - 1, x3 - i) ,
i = 0, . . ., x3, where i is the number of /3 services which
complete during the a3 and a0 services. Using Fig. 7(a)
it can be shown that

i=O;..,x,- 1.

Using Fig. 7(b) it can be shown that

It follows from the above after algebraic manipulation
that if x, + x, + x3 = N, x, = 0, x2 > 0 and x3 > 1 , then

IBM J . RES. DEVELOP.

www.manaraa.com

The remaining non-zero transition probabilities are given
as follows:

if x, + x, + x, = N - 1 and x, = 0, then

I if x, + xq + x, = N, x, > 0 and x, = 0, then

The equations r T = r, XxEIL, , rx = 1 , where T is the
(N + 1) ' by (N + 1)' stochastic matrix whose non-zero
entries are given by (B 1) - (B8), can be solved numeri-
cally to obtain the unique stationary probability vector
$ of the embedded Markov chain.

The next step in the computations is to compute p ,
the mean holding time in state x E CkN for the embedded
semi-Markov process and pk, the mean amount of a,
service time during the holding time in state x. It is simple
to show that

if x, + x, + .x3= N - 1

I if x1 + x, + x3 = N and xl > 0

I
"' _"
f

Figure 7 Transitions from state x = (0, x2, .x3); x2 + x3 = N ,
x p > 0, x3 > 1.

if x, + x2 + x, = N, x1
= 0, x, > 0 and x3 > 0

I i f x , + x , + x , = N - 1

if x, + x, + x3 = N . (BIOI

Finally,

where x. E fLN represents vo E - FN. Combining
(1) and (B9)- (B12) , it follows that

where

447

SEPTEMBER 1976 MODELING OF PROCESSOR SCHEDULING

www.manaraa.com

Acknowledgment
The authors are indebted to J . Rodriguez-Rose11 and
W. G. Tuel for sharing their insights into the operation
of IMS. The present work benefited from conversations
with them about resource contention and processor
scheduling in IMS, although this model does not apply
directly to IMS.

References
1. Information Management Lyystrm/360, Version 2, General

Information Manual, Report GH20-0765, IBM Corpora-
tion, White Plains, NY, 1973.

2. L. Kleinrock, Queuing Systems Volume 11: Computer
Applications. John Wiley and Sons, Inc., New York 1976.

3. P. A. W. Lewis and G. S. Shedler, “A cyclic-queue model
of system overhead in multiprogrammed computer sys-
tems,” J. ACM 18, 199 (197 I) .

4. S. S. Lavenberg, “Queueing Analysis of a Multiprogrammed
Computer System Having a Multilevel Storage Hierarchy,”
SIAM J. Comput. 2, 232 (1973).

5. F. Baskett, K. M. Chandy, R. R. Muntz and F. G . Palacios,
“Open, Closed, and Mixed Networks of Queues with Dif-
ferent Classes of Customers,” J. ACM 22, 248 (1975).

6. D. P. Gaver, S. S. Lavenberg and T. G. Price, Jr., “Explor-
atory Analysis of Access Path Length Data for a Data Base
Management System,” IBM J . Res. Develop. 20, 449
(1976; this issue).

7. P. A. W. Lewis and G. S. Shedler, “Statistical Analysis of
Non-stationary Series of Events in a Data Base System,”
IBM J . Res. Develop. 20, 465 (1976, this issue).

8. S. M. Ross, Applied Probability Models with Optimization
Applications. Holden-Day, Inc., San Francisco 1970.

9. W. L. Smith, “Renewal theory and its ramifications,” J.
Roy. Statist. Soc. Ser. B 20, 243 (1958).

IO. S. S. Lavenberg and G. S. Shedler, “A Queueing Model of
the D L / I Component of IMS,” Research Report RJ 1561,
IBM J. Res. Develop. 20, 465 (1976, this issue).

Received January 9, 1976

Dr. Luvenberg is located at the IBM Thomas J . Watson
Research Center , Yorktown Heights , N Y 10598 and Dr.
Shedler is located at the IBM Research Laboratory,
5600 Co t t l e Road , Sun Jose , CA 95193.

IBM J . RES. DEVELOP.

